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Abstract. On touch-based devices such as smartphones and tablets
users are accustomed to browse through lists and collections by using
flick gestures. For video navigation, however, mobile touch devices still
use the seeker-bar interaction concept. In this paper, we evaluate the
performance of a flick gesture-based video player in direct comparison
to a default video player with seeker-bar navigation for the purpose of
interactive search in video. We have developed a special video player on
a tablet device and performed a user study with 16 users with two dif-
ferent types of interactive search: target/known-item search and scene
counting. Our results show that the flick-based video player is less per-
formant than the default video player in terms of search time, but more
efficient in finding target scenes and the preferred interface by the vast
majority of tested users.

1 Introduction

When users want to navigate in a video they typically use a seeker-bar and scrub
to the corresponding temporal position in the video sequence. Almost all video
players and video interaction tools use this navigational interaction concept for
random access in video [13, 14]. This works fine as long as the video duration is
rather small and, hence, the required scrubbing accuracy is rather low. However,
if the video has a length of a few hours, scrubbing a seeker-bar becomes incon-
venient, especially on small displays, since even small movements result in large
temporal jumps (e.g., several minutes instead of seconds). Many researchers have
focused on how to improve navigation behavior and performance for such situa-
tions and proposed improved navigation tools; an overview is given in Section 2.
However, in practice these sophisticated navigation means are unfortunately not
available to the majority of users, since their devices typically only feature a
default video player. Therefore, many users often simply switch to fast-forward
and reverse mode when they want to find a specific scene in a long video (e.g., for
known-item search tasks [10, 11]), or use the available seeker-bar for navigation.

With mobile touch devices such as smartphones and tablets, a very natural
and intuitive way of enabling fast-forward and reverse functionality would be
a flick gesture: The user touches the screen with his/her finger and pushes the
video forward or backward. Once pushed to either direction the playback rate
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suddenly changes (to fast-forward or reverse, depending on the pushed direc-
tion) and then linearly returns to normal, except the user performs another flick
gesture. Otherwise, if the user flicks again, the fast-forward or reverse speed in-
creases even more. Flicking is a very well-known gesture that is available on most
(if not all) smartphones and tablets for browsing lists and collections, and we
can assume that users are very accustomed to this type of interaction. However,
currently it is not used for controlling the video playback rate, i.e., for interactive
search and navigation in video, which is exactly the focus of this work.

The idea of navigating in video through flicking was already investigated in
[8]. Unfortunately, from their evaluation we cannot directly deduce whether flick-
based navigation in video works worse or better for interactive search tasks than
seeker-bar navigation. Their interaction models – called dynamic/static flicking
and dynamic/static panning – were designed for stylus-based interaction on a
PDA and did not consider the actual speed of the flick gesture. Instead, they used
the distance of the flick gesture as granularity for navigation in video. Moreover,
in their evaluation the authors did not compare flick-based navigation to seeker-
bar navigation but evaluated flicking against panning and could not find any
statistical differences, neither for task performance nor for subjective ratings.

In this paper we investigate the performance of flick gesture-based video
navigation for interactive search tasks in videos. For that purpose we have im-
plemented a special video player on an Apple iPad device and performed a
user study with 16 users and two different types of tasks: (i) known-item/target
search and (ii) specific scene counting. We evaluate the achievable performance
of a flick gesture-based player in direct comparison to the one achievable with
a common video player using seeker-bar interaction. Our evaluation considers
several aspects: (i) achievable search time, (ii) retrieval performance, and (iii)
user experience and preference. Our results show that for the majority of tested
tasks/videos, users are faster with the common video player but less efficient in
finding target scenes than with the flick gesture-based player. At the same time
they find the flick gesture-based player more convenient and the better interface
than the default video player.

2 Related Work

In the last two decades, several proposals for improving video content navigation
were made. An overview of recent work in this area can be found in [13, 14].
Here, we only summarize works proposed for mobile devices with touch screen
interaction, a topic addressed by only a few authors.

Hürst et al. proposed the Mobile ZoomSlider interface [7] for stylus-based
navigation on handheld devices. The basic idea is a virtual seeker-bar that can be
used at any screen position. The vertical click position is utilized as a parameter
for navigation resolution. Moving the stylus left or right results in backward or
forward navigation and the vertical position of the drag operation defines how
fast the navigation action is performed. The same interaction concept has been
proposed for video content navigation on PDAs and smartphones in a follow-up
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work [8]. The authors further suggested circular navigation gestures for stylus-
based navigation in video and presented a few different interaction concepts in
[6]. However, unfortunately in the evaluation no direct comparison to seeker-bar
navigation was performed.

Karrer et al. [9] proposed the PocketDRAGON interface for touch-based
video content navigation on mobile devices. Instead of an overlaid seeker-bar,
they suggest direct manipulation of objects in the scene. A similar concept was
already proposed by Dragicevic for video navigation on desktop PCs in an earlier
work [2]. In their work, motion tracking is performed and object motion is used
as basis for the dragging operation along a motion trajectory. Additionally to this
object-based navigation mode, which rather improves the navigation accuracy
and typically does not allow quicker navigation over longer segments in the
video, they also support two-finger gestures. A horizontal wipe gesture with two
fingers allows to jump to the previous or next scene in the video. However, as
no evaluation has been performed by the authors, it remains unclear how well
this navigation concept supports navigation tasks in videos.

Huber et al. [4] focused on improving navigation in e-learning videos rather
than entertaining videos and proposed the Wipe’n’Watch interface. Instead of
a seeker-bar, they suggest to use wipe gestures for touch-based navigation on
smartphones. Their interface that operates in portrait mode is subdivided into
two areas: (i) the upper area shows the actual video content and (ii) the lower
area shows an overview of all available keyframes, i.e., available slides that act
as direct access points. Their work also targets inter-video navigation, similarly
to the idea of the RotorBrowser, proposed by De Rooij et al. for desktop use
[1]. Hence, vertical wiping allows to jump between semantically similar segments
among videos; e.g., topically related segments. The availability of such related
segments is indicated with an arrow in the upper right corner of the interface.
However, in their evaluation they did not directly compare their approach to
seeker-bar navigation. Therefore, it is not clear if this interaction concept is
superior than a seeker-bar.

In a recent work [12], we did already investigate navigation performance in
video with a multi-touch navigation model that uses different navigation gran-
ularity according to the vertical position the wipe gesture is performed. Our
results showed that uses like this kind of navigation and – for short videos –
were even faster than with the default video player.

In [5], we proposed the Keyframe Navigation Tree interface for touch-based
video content navigation on tablets. The main component of its navigation con-
cept are three scrollable horizontal stripes with very compact keyframes, which
can significantly outperform seeker-bar navigation at known-item search tasks.

To best of our knowledge, no one has however investigated the navigation
performance of a video player using flick gestures, in direct comparison to seeker-
bar navigation.
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3 Video Navigation With Flick Gestures

To evaluate the performance of video browsing/navigation with flick gestures,
we developed a new video navigation tool, which we call flick player.

3.1 Interaction Concept

(a) Interaction concept. (b) Interface for counting tasks.

Fig. 1. The flick player allows users to push the video forward and backward, i.e.,
switch to fast-forward and reverse mode by a simple flick gesture. Playback speed can
vary between -32x and 32x. Without any further interaction the player returns to single
playback speed (1x), according to a linear easing function.

The interaction concept of the flick player is based on the same idea proposed
in [8]: instead of providing a seeker-bar for navigation, we allow the user to flick
over the screen with his/her finger (see Figure 1(a)). More precisely, when the
user performs a flick gesture to the right the video player switches to fast-forward
mode with a playback speed that corresponds to the velocity of the flick gesture
(up to a maximum of 32x). If the user performs only one flick gesture, the
playback speed will automatically return to normal playback rate (1x) after a
while. We use a linear easing function for that purpose, which has been selected
after several experiments with different easing functions and early test users. If,
however, another flick gesture is performed by the user, the momentum of the
gesture will be added to the current value of the playback speed. Hence, the
fast-forward or reverse rate will be increased even more, until the maximum of
32x is reached. We use the same interaction concept for reverse mode, which can
be enabled via a flick gesture to the left.

3.2 Implementation Details and Issues

We implemented the flick gesture-based interaction concept on an Apple iPad
device with a 9.7-inch screen. Our implementation does always show the current
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playback rate with a colored line in a dedicated visualization area at the top
of the screen. At normal playback rate (1x) a purple bubble is shown in the
middle of the line (see top of Figure 1(b)). If the user switches to fast-forward,
the bubble becomes blue and moves to the right. Similarly, in reverse mode
the bubble becomes red and moves to the left (see Figure 2). Additionally, our
implementation shows the current playback time (top left), the duration of the
video (top right), and the current position in the video with a non-interactive
time-line visualization (bottom).

(a) Interface for target search tasks
(reverse mode).

(b) Interface for target search tasks
(fast-forward mode).

Fig. 2. Our implementation of the flick player also shows the current playback speed
(top) as well as the current position in the video (bottom).

Even though we used a recent edition of a tablet device (an Apple iPad Air),
its performance was not good enough to decode and play HD video at a speed of
32 times, even not with several optimizations and special video encodings with
very small GOP (group-of-pictures) sizes. The only working solution we found
was to encode 10 different versions of each video file, each with a different “en-
coded playback speed” (-16x,-8x,-4x,-2x,-1x,1x,2x,4x,8x, and 16x) and change
the real playback rate of the actual video player only in the range of 0.5x to
2x. For example, with the video file version encoded at 8x speed, we can sim-
ulate any actual playback rate from 4x to 16x, although the video player uses
only a real playback rate from 0.5x to 2x. Hence, in our implementation we use
three simultaneous video players that are loaded with three “adjacent instances”
(e.g., 4x, 8x, and 16x), where only the video player instance in the middle of this
group is currently visible (e.g., with the 8x file version and a real playback rate
of 1x). When the user would perform a flick gesture to the right, the flick player
would increase the playback rate accordingly to the velocity. If the real playback
rate of the video player reaches 2x (actual playback rate of 16x), our tool would
switch to the next video player loaded with the 16x speed file version and use
it at 1x real playback rate (same actual playback rate). With this instance we
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can further increase the real playback speed from 1x up to 2x, and simulate an
actual playback rate of up to 32x.

This idea is consequently used for both directions (faster and slower playback)
and implemented in a way that at any time, all three video player instances are
loaded with the correct file version. Our implementation allows a very smooth
transition from one video player instance to another, where the current video
player is brought to the background and the other one is brought to the fore-
ground, such that the user will not notice this “implementation trick”.

4 Evaluation

To evaluate the performance of the flick player in direct comparison to a default
video player, we conducted a user study with 16 participants (10 men, 6 women;
age: 25.38 ± 3.2 years) that had to solve interactive search tasks in videos. All
participants were experienced smartphone users, i.e., had been actively using a
smartphone for at least one year. Each participant performed search tasks in
four different videos for two different kind of search tasks (see Table 1). For
target search tasks (also known as known-item search tasks) we presented the
target scene of interest to the user and requested him/her to find it as fast as
possible with the corresponding tool (flick player or default video player). For
scene counting tasks we requested the user to find several instances of specific
scenes as fast as possible, and increase counter values by using available stepper
buttons in the right part of the interface, as shown in Figure 1(b). Such specific
scenes were goals, corners, throw-ins, and free-kicks in the soccer videos, and the
appearance of specific answers (A, B, C, and D) in the “Who Wants to Be A
Millionaire” videos. We used a maximum of four different kinds of such scenes
for scene counting tasks, since our interface provides only four counter buttons.

Each participant tested both interfaces (flick player and default video player)
with different instances of test videos (however with the same genre). For the
selection of tasks and interfaces we followed a latin-square principle to avoid any
familiarization effects. For example, if for target search with the flick player the
video file 1 news was used, 2 news was used for target search with the default
video player, and vice versa.

In the following we perform statistical analysis on the collected log data
and evaluate the performance of both interfaces in terms of run-time, retrieval
efficiency, and user ratings.

4.1 Target Search Tasks

Search-Time A paired-samples t-test was used to determine whether there was
a statistically significant mean difference between the interfaces regarding search
time for documentary videos. Data are mean seconds ± standard deviation,
unless otherwise stated. One outlier was detected that was more than 1.5 box-
lengths away from the edge of the box in a boxplot. Inspection of its value did
not reveal it to be extreme and it was kept in the analysis. The assumption of
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Table 1. Videos used for the evaluations.

Video Genre
Duration

(hh:mm:ss)
Search Task

1 documentary Documentary about 00:50:04 Target
2 documentary nature/animals 00:44:32 Search

1 news News 00:53:14 Target
2 news show 00:53:30 Search

1 football Excerpt of a 00:15:02 Scene
2 football soccer match 00:15:00 Counting

1 gameshow Excerpt of “Who Wants 00:13:38 Scene
2 gameshow To Be A Millionaire” 00:15:01 Counting

normality was not violated, as assessed by Shapiro-Wilk’s test (p = .08). The
default player (67.813 ± 30.259 secs) was statistically significant faster than the
flick player (128.813 ± 93.293 secs) with t(15) = 3.026, p = .05, d = .756.

The same test was performed for news videos. No outlier was detected in
this case. The assumption of normality was not violated, as assessed by Shapiro-
Wilk’s test (p = .835). The test revealed that the default player (81.313 ± 31.33
secs) was again statistically significant faster than the flick player (142.313 ±
60.643 secs) with t(15) = 4.608, p = .0005, d = 1.152.

4.2 Scene Counting Tasks

In terms of scene counting we analyzed the data in different aspects.

Search-Time In a first step, we investigated whether the required search times
to complete a search task for a video type (“Who Wants To Be A Millionaire”,
soccer) differed between the interfaces. We concentrated first on the “Who Wants
To Be A Millionaire” videos. Four outliers were detected, which were more than
1.5 box-lengths from the edge of the box in a boxplot. Inspection of their val-
ues did not reveal them to be extreme and it they were kept in the analysis.
As normality was violated in Shapiro-Wilk’s test (p = .05) we used Wilcoxon
signed-rank test in this case. A statistically significant median difference was de-
tected between the default video player (median=105 secs) and the flick player
(median=148 secs), z = −2.638, p = .05.

In case of the soccer videos, two outliers were detected, which were more
than 1.5 box-lengths from the edge of the box in a boxplot. Inspection of their
values did not reveal them to be extreme and it they were kept in the analysis.
Normality was violated in Shapiro-Wilk’s test (p = .05). Therefore, we again
used the Wilcoxon signed-rank test to detect differences. This time, however,
no statistically significant median difference could be detect between the default
video player (median=219 secs) and the flick player (median=261 secs).

Retrieval Efficiency As a next step, we investigated if there are differences in
the number of found scenes between the interfaces. In case of the “Who Wants To
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Be A Millionaire” videos no outliers were detected, but normality was violated
in Shapiro-Wilk’s test. Therefore, a Wilcoxon signed-rank test was performed.
However, no statistically significant median difference was measured between the
video player (median=13 instances) and the flick player (median=14 instances).

When we looked at the data of the soccer videos, a Shapiro-Wilk’s test re-
vealed that the assumption of normality was not violated (p = .406). There-
fore, we decided to use a paired-samples t-test. No outliers were detected. The
test showed a statistical significant difference between the default video player
(mean=6.938 instances) and the flick player (mean=8.188 instances), t(15) =
2.825, p = .05, d = .706.

4.3 Questionnaires

In the questionnaires we asked our participants to perform a subjective rating
of each aspect of the interfaces, according to the NASA-TLX (Task-Load-Index)
method [3]: (i) how mentally demanding was the interaction, (ii) how physically
demanding was it, (iii) how hurried users felt when solving the task with the in-
terface, (iv) how hard they had to work to accomplish their level of performance,
(v) how insecure, stressed or annoyed they felt when using the interface, and (vi)
how successful they felt in accomplishing the tasks. They could choose a value
between 0 and 10, where 0 in all cases but for question (iv) represented “very
low” and 10 represented “very high”. In contrast, for question (vi) 0 indicated
“perfect” and 10 indicated “failure”.

Fig. 3. Perceived workload ratings (according to NASA Task-Load-Index [3], with
Likert-scale 0-10) for both interfaces (error bars: ± s.e. of the mean)

To determine whether there are statistical significant differences between the
interfaces we performed a Wilcoxon signed-rank test for each question. The flick
player scored statistically significantly better for questions (i) z = 2.145, p = .05,
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(ii) z = 2.419, p = .05, and (iv) z = 2.621, p = .05. In contrast, the default video
player performed significantly better for question (vi) z = 2.224, p = .05. In all
other cases the difference was not statistically significant.

4.4 Preferred Interface

We further asked the users to rate both interfaces on a range between 1 and
6, where 1 is best and 6 is worst. The average rating of all 16 users was 2.5 ±
0.18 for the default video player, and 1.75 ± 0.17 for the flick player, which is
statistically significant better. Out of 16 users, 11 users (68.75%) gave a better
rating to the flick player, three gave the same rating as to the default video
player, and only two gave a worse rating. When asked about the reasons for
their ratings, many users mentioned that with the default video player they did
not like that they always had to keep their finger on the seeker-bar and move it
while watching the content. They much more preferred to just push the video
and then concentrate on the playback. Similarly, most users mentioned that they
like that less physical interaction is required for the flick player.

5 Discussion and Conclusions

We found that users perceived the flick player as less mentally demanding and
less physically demanding than the default video player, and felt that the flick
player requires less effort for interactive video search tasks in general. More than
68% of the participants rated the flick player as the better interface for interactive
video search. At the same time, however, they think that the default video player
with a common seeker-bar provides better support for such navigational search
tasks in video content.

The evaluations of the run-time and the retrieval efficiency revealed that for
three out of four video files users were significantly faster with the default video
player for both kinds of tested search tasks (target search and scene counting).
However, in terms of retrieval efficiency the flick player performed significantly
better, at least for one of the two tested videos (cf. Table 1 and Section 4.2).

Figure 4 shows navigation plots of four different users, which reveal the nav-
igation behavior in the same video file for the two different interfaces over time.
In the right-top part of the figure we can see the reason why many users were
slower with the flick player: many users did not make use of available high-speed
playback rates (e.g., 16x and 32x), instead they mainly used playback rates of
1x to 4x and, hence, required a lot of time for the scene counting task.

With the default video player (left two plots) users could quite quickly nav-
igate over the video and easily count the target scenes by constantly scrubbing
the seeker-bar at moderately high speed. Only those users that made use of the
available high playback rates of the flick player, such as the one in the bottom
right of Figure 4, could achieve a similarly high – or even better – run-time
performance.
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Fig. 4. Navigation behavior of four different users for scene counting in two different
videos with the default video player (left) and the flick player (right).

The same is true for the navigation behavior at target search tasks (Figure 5),
where only users with a high amount of 32x playback rate could outperform users
of the default video player (bottom-right in the figure). The top-left part in the
figure shows another interesting observation: this user obviously had a rough
clue about the temporal position of the target scene in the video, for any reason
whatsoever, and navigated very quickly to the last quarter of the video where
he/she looked around more carefully. Such a navigation behavior is currently
unfortunately not supported by the interaction concept of the flick player.

From these findings we can conclude that there is high potential for video
navigation with flick gestures and users seem to welcome such an alternative
navigation model (see Figure 3). Also, a flick-based video player can enable
higher interactive retrieval efficiency, but with the current interaction model
cannot outperform the default video player with seeker-bar navigation in terms
of search time. This means that additional studies should be performed, where
seeker-bar navigation is used in combination with flick-gestures and/or the flick
gesture flexibility is further improved.
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Fig. 5. Navigation behavior of four different users for target search in two different
videos with the default video player (left) and the flick player (right).
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